
Experimental Evaluation and Workload Characterization for High-
Performance Computer Architectures

Tarek A. EI-Ghazawi, P.I.
Department of Electrical Engineering and Computer Science

The George Washington University
Washington, DC 20052

Final Report
111194-5131195

Submitted to USRAICESDIS

This research is conducted in the context of the Joint NSF/NASA Initiative on Evaluation
(JNNIE). JNNIE is an inter-agency research program that goes beyond typical.bencbking
to provide and in-depth evaluations and understanding of the factors that limit the scalalabiltiy
of high-performance computing systems. Many NSF and NASA centers have participated in
the effort. Our research effort was an integral part of implementing JNNIE in the NASA ESS
grand challenge applications context. Our research work under this program was composed
of three distinct, but related activities. They include the evaluation of NASA ESS high-
performance computing testbeds using the wavelet decomposition application; evaluation of
NASA ESS testbeds using astrophysical simulation applications; and developing an
experimental model for workload characterization for understanding workload requirements.

In this report, we provide a sumrnary of findings that covers all three parts, a list of the
publications that resulted from this effort, and three appendices with the details of each of the
studies using a key publication developed under the respective work.

SUMMARY OF FINDINGS

Wavelet D e c o m - m n On High-Performance Computers
In this study, we have mapped the multi-resolution Wavelet algorithm, developed by Mallat

. .

[Mal89], onto the high-performance parallel computers and applied it to remotely sensed data
from NASA's Landsat-Thematic Mapper images. Target platforms were the ESS MasPar MP-
1 and MP-2, and the ESS Intel Paragon. The MasPar has provided two orders of magnitude
improvement over a workstation and exhibited good scalability. The Intel Paragon produced
one order of magnitude improvement and required knowledge about the network operation
and special effort to scale beyond 4 processors.

Astmghvsical Simulations on High-Performance ComDuters
In this study some of the sources of overhead were identified and measured for Nbody and the
Particle In Cell (PIC) ESS applications. Among the observed sources of overhead are the
programming model, programming style, and the communications patterns. With the
sophistication of multicomputers and in the light of the lack of comparably powerful compiler
technology, parallel machines are much less forgiving than uniprocessor environments. Subtle
changes in programs can increase or decrease overhead significantly. Some types of overhead can
be reduced by following better programming practices and some can be reduced by converting them
to less costly overhead activities. The dominant type of overhead is communications and it often
represents a real challenge to scalability. While it is not considered a good programming practice,
duplication redundancy can effectively help reduce the effect of communications. Efficiency in most
of the cases, specially when data sets were large enough, was greater than 50% which indicates that
progress in high-performance computing is consistent with the needs of scientific parallel
simulations.

Parallel Work load c haracte rization
This study introduced a parallelism-based methodology for an easy to understand representation
of workloads. The method is architecture-invariant and can be used effectively for the
comparison of workloads and assessing resource requirements. A method for comparing
w^&l ulluuads ^

uses the normalized Euclidean distance to provide an efficient means of comparing the
workloads. The notion of centroid coupled with distance (similarity) among pairs of workloads
provide the basis for quantifiable analysis of workloads to make informed decisions on the

based on the Gotion of zmtmid of pzirdlel insewtion was introduced. Tkis methd

2

composition of parallel benchmark suites. Analysis of existing benchmarks is also provided for
by this model in which the centroid sheds light on the hardware resource requirements and how
the benchmark is exercising the target machines, and the distance among workload pairs allows
identifying possible correlation.

LIST OF PUBLICATIONS FROM THIS EFFORT

I?iuuxs
[11 T. El-Ghazawi and Jacqueline Le Moigne. "Mutiresolution Wavelet Decomposition on the
MasPar Massively Parallel System". Journal of Computers and Their Applications, Vol. 1,
NO. 1, August 1994.

[2] Chan, Chui, LeMoigne, Lee, Liu, and El-Ghazawi. "The Performance Impact of Data
Placement for Wavelet Decomposition of Two Dimensional Image Data on SIMD Machines".
Proceedings of FrontiersP5, McLean, IEEE CS Press, February 1995.

[3] A. M a y a and T. El-Ghazawi. "An Electrostatic Particle-In-Cell (PIC) Simulations on the
Intel Paragon". Proceedings of the Parallel and Distributed Computing and Systems, Orlando,
September 1995.

[4] T. Sterling, S. Zalasak, and T. El-Ghazawi. "An Innovative Approach to Benchmarking
Scalable Parallel Computers for the Earth and Space Sciences Problem Domain". Scalable
High-Performance Computing Conference'94 (poster session), IEEE Computer Society,
Knoxville, TN, May 1994.

IS Technical ReDorh
[SI T. El-Ghazawi and Jacqueline Le Moigne. "Mutiresolution Wavelet Decomposition on the
MasPar Massively Parallel System". TR-94- 122.

[6] Chan, Chui, LeMoigne, Lee, Liu, and El-Ghazawi. "The Performance Impact of Data
Placement for Wavelet Decomposition of Two Dimensional Image Data on SIMD Machines".
TR-94- 125.

3

APPENDIX A:

WAVELET DECOMPOSITION ON HIGH=
PERFORMANCE COMPUTERS

In Collaboration with Dr. Jacqueline Le Moigne (CESDIS)

Wavelet Decomposition on High-Performance

Computing Systems

Tarek A. El-Ghazawi

Department of Electrical Engineering and Computer Science
The George Washington University

Washington, D.C. 20052
tarek@seas.gwu.edu

(202)994-5507

Jacqueline Le Moigne

Center of Excellence in Space Data and Information Sciences
NASA Goddard Space Flight Center

Code 930.5
Greenbelt, MD 20771

Abstract

Wavelet transforms are distinguished with many favorable characteristics, over other popular

signal processing techniques such as the Fourier transform. Due to the recent discovery of a fast

sequential algorithm for Wavelet, by Mallat, the past few years have seen a remarkable increase in

applying Wavelets to real-life problems, in which speed is critical. In this paper we present and

compare efficient Wavelet decomposition algorithms on different parallel architectures. We report

and analyze experimental measurements, using NASA remoteiy sensed images. The results show

that the algorithms achieve significant performance gains on current high-performance parallel

systems and meet scientific applications and multimedia requirements.

Index Terms: Parallel Processing, Experimental Performance, Image Processing, and Wavelets

1

1. Introduction

Traditionally, Fourier transforms have been utilized for signal analysis and reconstruction.

However, Fourier representations do not include any local information about the original signals.

Therefore, windowed Fourier transforms, particularly Gabor transforms [Chu92], have been

introduced. With a windowed Fourier transform, a signal is analyzed after filtering by a fixed

window function. Such window functions produce the localization effect that traditional Fourier

transforms lack. However, since the envelope of the signal is the same for all frequencies, a

windowed Fourier transform uniformly samples the time-frequency plane. Depending on the

applications, for example speech analysis or image feature extraction, it can be of interest to have a

more flexible division of the time-frequency plane to provide moTe "timedetails" for high

frequencies. Wavelet transforms provide this type of sampling by frlkring the signal with

translations and dilations of a basic function, called "mother Wavelet".

In the image processing domain, Wavelet transforms have been proven to be very useful for

such tasks as image compression and reconstruction, feature extraction, and image registration

[Chu92, Dja92, Dau92, Md89, Str89, Lem941. Furthermore, the multi-resolution scheme

developed by Mallat Md89, Cod92, Num921 provides a very fast algorithm which increases the

importance of wavelets for on-line processing of imagery data. The speed of such processing is

especially important for managing remotely sensed data whose already massive amount will grow

even bigger with such programs as NASA's Earth Observing System (EOS).

In this study, we are investigating the parallel implementation and performance of the Mallat

algorithm on parallel architectures. Coarse-grain algorithms for both the Intel Paragon are

developed. Measurements are collected, analyzed and compared with the fine-grain MasPar

experimental results [Chan95, El-Ghaz941. Test image data from NASA's Landsat-Thematic

Mapper (TM), were used. The results will show that the proposed algorithms can achieve orders of

2

magnitude performance improvement on contemporary high-performance computing systems,

when compared typical desktop workstations. Such performance can satisfy real-time image

processing needed for large scientific databases, such as NASA's EOS Data Information System

(EOSDIS), and multimedia applications. This paper is organized as follows. Section 2 provides

an overview of the discrete Wavelet transform and the M a t algorithm. Section 3 provides an

overview to the Jet Propulsion Lab (JPL) Intel Paragon architecture, that was used in this study.

Section 4 discusses the algorithms and implementation issues on the different high-performance

computing architectuxes. Timing results and performance analysis are given in section 5 .

Conclusions are given in section 6.

2. Multi-Resolution Wavelet Decomposition

As described in section 1, a Wavelet transform is defined by the translations and the dilations

of a basic function called "mother Wavelet." Depending on the application, continuous or discrete

transforms may be utilized. Also, special conditions can be imposed on the mother Wavelet which

leading to orthonormal bases of wavelets, which is particularly useful for data reconstruction

[Dau92]. In this paper, we will only consider Wavelet transforms for the processing and analysis

of 2-D image data. Thus, discussion will be limited to discrete wavelets, particularly those with

orthonormal bases.

According to Mallat [Mal89], an orthonormal basis of wavelets can be defined by a scaling

function and its corresponding conjugate filter L. In this case, the Wavelet decomposition of an

image is similar to a quadrature mirror fdter decomposition with the low-pass filter L and its mirror

high-pass filter H. The decomposition of a 2-D irriige also assumes ihat &e milti-resolution

representation of the image space is "separable". This means that the two axes x and y can be

3

.

L Rows ab

treated independently in the decomposition as well as in the reconstruction. This decomposition is

summarized in figure 1.

LLI<+l*- Ik+ l -

Multi-Resolution Wavelet Decomposition

l&lllkl

Columns). Lk+l *=

The input image is first convolved along the rows by the two filters L and H, and the

horizontal dimension of these two intennediate results is decimated by 2. Each of the two

“column-decimated“ images, Lk+l and Hk+l , is then convolved along the columns by the two

filters L and H and decimated along the rows by two. This decomposition results into four

images, LLk+l , LHk+l , HLk+l and HHk+l . Each of these images, such as the low/low

image, LLk+l , is taken as the new input to perform the next level of decomposition and so on.

H

The Multi-Resolution Wavelet decomposition algorithm can be described by the following

sequence of steps:

LW+1

4

L Rows .c H Lk+l

Columns * Hk+l b

H Rows .). H Hk+l

Start from the image I() , level 0 of the multi-resolution sequence (k=O).

High-Pass and low-pass filterings of image rows at level k.

Decimate by 2 the number of columns: results in and Lk+l and Hk+l.

High-Pass and low-pass filterings of image columns at level k.

Decimate by 2 the number of columns: results in LLk+l , LHk+l, HLk+l , and HHk+1 .
The low/low result, LLk+l can be renamed Ik+l , since it corresponds to the compression

of the original image at level k+l .
Set k to the next level of decomposition, k+l, and continue the iterative process from (1) to

(4) until the desired level of decomposition is achieved.

Wavelet reconstruction is obtained by a similar reverse process, which is graphically

described in figure 2.

Columns Rows

I L L * r l l n t e rp 0 lat e 1 y - h
Rows by 2 -

Y-
F H n t e rpo lat e) c F) J

Rows by 2
I

Multi-Resolution Wavelet Reconstruction

m

5

3. Overview of the Parallel Systems

Experimental measurements for this work were obtained using the NASA Earth and Space Science

(ESS) high-performance computing testbeds. In particular, the GSFC MasPar MP-2 and the Jet

Propulsions Lab (JPL) Intel Paragon were used. A brief description of these systems is given

below.

3.1 The MasPar

MasPar Computer Corporation currently produces two families of massively parallel-

processor computers, namely the MP-1 and the MP-2. Both systems are essentially similar, except

that the second generation (MP-2) uses 32-bit RISC processors instead of the 4-bit processors

used in MP-1. The MasPar MP-1 (MP-2) is a fine-grained, massively parallel computer with

Single Instruction Multiple Data (SIMD) architecture. The MasPar has up to 16,384 parallel

processing elements (PES) arranged in a 128x128 array, operating under the control of a central

array control unit (ACU). The processors are interconnected via the X-net into a 2-D mesh with

diagonal and toroidal connections. In addition, a multistage interconnection network called the

global router (GR) uses circuit switching for fast point-to-point and permutation transactions

between distant processors. A data broadcasting facility is also provided between the ACU and the

PES. Every 4x4 grid of PES constitutes a cluster which shares a serial connection into the global

router. For more information on the MasPar, the reader can consult more specialized MasPar

references [Bla90], [Mas92], [NicW].

3.2 The Intel Paragon

6

The Paragon has a total of 64 nodes organized into a 16x4 mesh, of which 54 are compute nodes and 8

are service nodes. Each node, an Intel GP node, is essentially a separate computer with one compute

and one communication i860 processors. Each of the 56 compute nodes has 32 MBytes of memory.

The service nodes include: 4 VO nodes with 32 MBytes memory and a 4.8 Gbyte RAID each, 1 HIPPI

node with 32 MBytes memory, 1 User Service node with 32 MBytes memory, and 1 boot node with 32

MBytes memory and a 4.8 Gbyte RAID. The peak performance (using 56 nodes) is 5.6 GFlops in

single precision with an aggregate memory space of 1.8 GBytes and aggregate online disk capacity in

excess of 20 GBytes. The programs can be developed in C or FORTRAN which are supported by NX

library routines for communication and synchronization purposes.

4. Parallel Implementations

In order to allow accurate measurements of communications, the message passing programming

model was used in the Paragon. All applications were developed in C and augmented with PVM

communication calls. The applications used the "single program, multiple data" (SPMD)

programming model. In this model, the same program runs on each node in the application, but

each node works on a part of the data. However, because each node is an independent computer,

one can also use other programming models. One example is the "manager-worker" model, in

which a "manager" program starts up several "worker" programs on other nodes, then gathers and

interprets their results.

According to the previous descriptions, the Wavelet algorithm can be defined as a combination of

successive frfferings and decimations. Our parallel implementation will concentrate on these two

operations, focusing on minimizing the communication costs by reducing the number of

communication transactions and the distance between the communicating processors.

7

4.1 The Fine-Grain SIMD Implementations

On the MasPar MP-2, two algorithms were used, referred to as systolic and systolic with dilution,

See [El-Ghaz94] and [Chan95] for details. Both of them store the filter in the control unit and

broadcast the filter elements from last to first. After each broadcast, the algorithm requires one

multiply and accumulate, followed by shifting the partial result to the left. The algorithm repeats

this step for as many times as the size of the filter with partial results being accumulated and built

up in a systolic fashion. By the last step, each (logical) processor ends up with one pixel result.

The difference between the two algorithms is in the way decimation is handled. In the systolic

algorithm, decimation is accomplished using the global router. In the dilution algorithm, the filter

is diluted or stretched to be aligned with the relevant pixels, thus avoiding the use of the MasPar

global router.

When the image data is larger than this basic size, a “virtualization” of the PE array has to be

defined. Two virtualization methods were considered, “cut and stack” and hierarchical. The

hierarchical gave the best results since it improves data locality for the underlying computations

[Chan95]. In the “cut and stack virtualization scheme, the image is cut into squares corresponding

to the size of the basic parallel array. For example, if the size of the image is 512x512, we will

need to stack 16 layers of image data in the 128x128 parallel array. The hierarchical virtualization

divides up the image into subimages and allocates each subimage to a different physical processor.

The MasPar systolic algorithm was shown to be processor optimal[El-Ghaz94].

4.2 The Coarse-Grain MIMD Implementations

8

Reducing the number of transactions was done by distributing stripes of the image rather than

blocks limiting exchange of information to one neighbor instead of two, which would have been

needed should image data be distributed by blocks, see figure 3. Secondly, as seen in figure 4,

those slices are distributed in a snake-like fashion in order to limit communications to immediate

neighbors only. Those communications transactions are needed at the end of each decomposition

level in order to build a guard zone around the processor local data from the decomposition results

in its neighbors before the next decomposition level starts. Using a striped data decomposition,

such zone is only needed for column filtering. In block data decomposition, guard zones need to

Striped

Reducing Communication Transactions Via Striping

I L b u L i

9

P7

Allocating image sub-domains to
Processors

Reducing the Paragon Communications Distances Via a Snake-Like Domain

Decomposition

luluA

be established for both the row and column filtering. The depth of the zone is in the order of the

filter length. Guard zone data is brought from the east neighbor in for row filtering, and from the

south neighbor for the column filter.

5. Experimental Results

Wavelet dexomposition of a 512x512 Landsat-Thematic Mapper image of the Pacific Northwest

area was used for our experiments. The experimental results for this image are given when filters

of sizes 8,4, and 2 are used along with 1,2, and 4 levels of decompositions, respectively. It

10

should be noted that as the number of decomposition levels increases, more communication is

required. Increasing the filter size, however, increases the computational dominance in this

- problem.

5.1 Intel Paragon Results

Paragon for F = 8 , L = 1
7

a
S R
W

t a 5
VI

4

3

2

1

+ Sraimfornard
4 Wke

I -
1 /

+ Sraimfornard
4 Wke 1 /

0 10 20 30 40
Processors

Paragon Performance for Filter Size 8 and 1 level of Decomposition -

1 1

0

U

E
Q)

3

" I

1

0 : I I I

0 10 20 30

Paragon Performance for Filter Size 4 and 2 levels of Decomposition -
Paragon for F = 2 and L=4

8 ,

d lb 20 30 40

Paragon Performance for Filter Size 2 and 4 levels of Decomposition

E i u L z
The Paragon scaling results are shown in figures 5 through 7. Scalability till 4 processors were

obtained using the straight forward data distribution, where no arrangement was made to limit

communication to nearest neighbors. The reason for the 4 can be seen from figure 4. Beyond 4

1 2

processors, processors at the right edge of the network attempt to communicate with those in the

leftmost column of the following row. Due to dimension routing, where messages in this case

would travel along the horizontal dimension first before moving along the vertical, conflicts would

be created. For the small amount of computations in the Wavelet operations, this creates an

excessive communications overhead that prevents scalability.

The snake-like data distribution on the other hand does not create these conflicts and limit

communication to a distance of one, thus creating the opportunity for relatively better scalability.

The Paragon in general, however, shows modest scalabiltiy. Communication cost was observed

from the measurements to be the limiting factor still. This can be also noted from figures 5 through

7. With the inc- in communications requirements, due to the increase in the levels of

decomposition, the speedup c w e continues to drop, with best results seen at one level of

decomposition and worst at 4 levels.

5.3 Comparative Results

MasPar MP-2 (16K)

Intel Paragon 1 Proc.

32 Proc.

DEC 5000 Workstation

FWL1

.0169

4.227

.613

5.47

F4/L2

.0136

3.45

.632

4.54

F2/L4

.0121

2 .78

.6621

4.11

1 3

Comparative Wavelet Decomposition Performance Measurements
IU2k.l

Table 1, lists the key measurements to help comparing the performance of the mentioned machines.

From the table, it is clear that for the machine sizes and configurations used the MasPar is still

favorably performing. This is consistent with SIMD machines that have been know to perform

well in image processing applications. The MasPar, with the given configuration, is capable of

processing 30 images or more per second. Thus for real-time video, multimedia applications, and

scientific and medical applications high-performance computing is quickly asserting its presence.

6. Conclusion

In this study, we have mapped the multi-resolution Wavelet algorithm, developed by Mallat

[Mal89], onto the high-performance parallel computers and applied it to remotely sensed data from

NASA's Landsat-Thematic Mapper images. The MasPar has provided two orders of magnitude

impmvement over a workstation, for the specific hardware described here. The Intel Paragon

exhibited one order of magnitude improvement and required knowledge about the network

operation and special effort to scale beyond 4 processors.

References

[Bla90] Tom Blank, The MasPar MP-1 Architecture, Proc. of the ZEEE Compcon, Feb. 1990.

[Chan95] Chan, C h i , Lzhloigne, Lee, Liu, and El-Ghazawi, Tt;e Perkm~acce Impact of Data

Placement for Wavelet Decomposition of 2-D Image Data on SIMD Machines. Frontiers '95,

M c h , VA.

1 4

[Chug21 C.K. Chui, An Introduction to Wavelets, Wavelet Analysis and its Applications, Volume

1, Academic Press, 1992.

[Cod921 M.A.Cody, The Fast Wavelet Transform, Dr.Dobb's Journal, April 1992.

[Dja92] J.P. Djamdji, A. Bijaoui and R. Maniere, Geometrical Registration of Images: The

Multiresolution Approach, Journal of Photogrammetry and Remote Sensing, Vol. 59,

No.5, May 1993, 645-653.

[Dau92] I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series in

Applied Mathematics, Society for Industrial and Applied Mathematics, 1992.

Fl-Ghaz941 Tarek El-Ghazawi and Jacqueline Lemoigne, Multiresoultion Wavelet Decomposition

on the MasPar Massively Parallel System. International Journal of Computers and Their

Applications, September 1994.

[Fan891 2. Fang, X. Li, and L. M. Ni, On the Communication Complexity of Generalized 2-D

Convolution on Processor Arrays, IEEETC, February 1989.

[Fan861 2. Fang, X. Li, and L. M. Ni, Parallel Algorithms for 2-D convolution, Proceedings of

IC PP '86.

[Lee871 S.-Y. Lee and J. K. Aggarwal, Parallel 2-D Convolution on a Mesh Connected

Processor Array, IEEETPAMI, Juiy 1987.

I 1 5

E

[Lee941 H.J. Lee, J.C. Liu, A.K. Chan, and C.K. Chui, Parallel Implementation of Wavelet

Decomposition/Reconstruction Algorithms, Proceedings SPIE Wavelets'94, Orlando,

April 5-8, 1994.

[Lem94] J. LeMoigne, Parallel Registration of Multi-Sensor Remotely. Sensed Imagery Using

Wavelet Coefficients, Proceedings SPIE Wavelets'94, Orlando, April 5-8, 1994.

[Lug31 J. Lu, parallelizing Mallat Algorithm for 2-D Wavelet Transforms, Information

Processing Letters, 45,255-259,1993.

[Mas921 MasPar Technical Summary. MasPar Corporation, November 1992.

[Mal891 S.G. Mallat, A Theory for Multiresolution Signal Decomposition: The Wavelet

Representation, IEEE Transactions on Pattern Analysis and Machine Intelligence, V 01.

11, No. 7, July 1989.

[Mar891 M. Maresca and H. Li, Morphological Operations on Mesh Connected Architectures: A

Generalized Convolution Algorithm, Proc. of the I986 IEEE CS Con$ on Computer

Vision and Pattern Recognition, pp 299-304.

[Num92lNmerical Recipes, Chapter 13.10 Wavelet Transforms, pp 591-606, 1992.

[Nic90] J. Nickolls, The Design of the MasPar MP-1: A Cost Efficient Massively Parallel

Computer, Proc. of the IEEE Compcon, Feb. 1990.

[Str89] G. Strang, Wavelets and Dilation Equations: A Brief Introduction, SIAM Review, Vol.

31, No. 4, pp. 614-627, December 1989.

1 6

[St0831 Q. F. Stout, Mesh-Connected Computers with Broadcasting, IEEETC, September 1983.

1 7

APPENDIX B:

ASTROPHYCIAL SIMULATIONS ON HIGH=
PERFORMANCE COMPUTERS

In Collaboration with A. Meajil (GWU) and A. Ozkaya (GWU)

An Empirical Study of Parallel Overhead and
Scalability of Scientific Simulations

Ab 8 t rac t

High-Performance Computing Systems based on parallel processing
have the potential for satisfying the rapid growth in
computational requirements of large physical simulation problems,
at economical costs. As such machines grow in size, however,
parallelization overhead grows in a manner that can limit
scalability. This work sheds some light on the sources,
dynamics, and magnitudes of the different types of overhead and
their impact on performance. Results are obtained through
experimental measurements of NASA Earth and Space Sciences (ESS)
astrophysical simulations, running on the JPL/ESS Intel Paragon
and CRAY T3D.

1

1. INTRODUCTION

Experimental HPC systems based on parallel processing
architectures offer the opportunity to achieve orders of
magnitude performance gain for existing problems as well as make
feasible the solution of problems of much greater size and
resolution. Information derived from evaluation studies can
enhance our understanding of the potential growth path of high-
performance computing and reveal possible difficulties that
inhibit advances. The Joint NSF/NASA Initiative on Evaluation
(JNNIE), is a national evaluation activity which involves NSF and
NASA centers and, thus, includes a large number of testbeds and
applications. JNNIE is concerned with such issues as application
characterization, usability, macro performance, and micro
performance. In this work, which is conducted in the framework
of JNNIE, micro-performance only is considered. Micro-
performance is concerned with metrics and structured evaluation
methods to discover the sources of performance degradation in the
basic observable behavior of a machine, against an imaginary
ideal. Examples of these sources could be starvation, latency,
contention, and overhead. Micro-performance measurements
collected here have focused on interprocessor communications
overhead, redundancy overhead, load-imbalance overhead, and time
spent doing useful work. We refer to this set of measurable
quantities as the performance budget. The target applications
were all selected from NASA Earth and Space Sciences (ESS)
domain. The measurements presented here are from two specific
applications: (1) the N-body simulations, and the (2) Particle-
In-Cell (PIC) simulations. The target high-performance computing
platform for this study were the ESS Intel Paragon and CRAY T3D
at the Jet Propulsion Laboratory (JPL).

This paper is organized as follows. Section 2 discusses the
selected NASA ESS applications as well as the target high
performance computing platforms for this study. Section 3
discusses the types of overhead measurements collected. Section 4
presents the measurements collected for the N-body and the PIC
simulations, respectively. Observations and conclusions are
derived in Section 5.

2. APPLICATIONS AND SYSTEM SCOPE

A s mentioned earlier, the NASA Earth and Space Sciences (ESS)
applications considered in this work are the N-body simulations
and the Particle-in-Cell (PIC) simulations. The classical N-body
problem simulates the evolution of a system comprising n bodies
(particles), under the influence of forces exerted on each body
by tne whole system. Typical d ~ m a i i ; ~ of applicaticn icclude (i!
astrophysics, where the bodies can be viewed as stars or planets
in a galaxy, (ii) molecular dynamics, where the bodies are
molecules or atoms, and (iii) plasma physics, where the bodies
are ions or electrons. The example problem we use in this paper
is a simQlation of interacting galaxies from astrophysics. The

2

problem studies how the positions and velocities of stars in the
galaxies evolve with time under the gravitational forces that the
stars exert on one another.

Numerical Particle-Mesh techniques, also known as Particle-In-
Cell (PIC), are commonly used to model plasmas, gravitational
N-body systems, and both compressible and incompressible fluids
[3,9,12]. They represent a popular variant on particle simulation
techniques utilizing a numerical grid to more effectively compute
the forces acting on the particles. The naive particle-particle
approach is only useful in modeling a system with a small number
of particles (<10000) because of the very rapidly growing
computational complexity. Compared to the most effective
solutions, particle-mesh techniques work better when the particle
density distribution is relatively uniform. Tree codes, on the
other hand, are favored in systems with large density contrast.

These two applications were ported to the target platforms and
measurements were collected to study overhead and scalability.

2 . 1 T h e T a r g e t S y s t e m s

The JPL/ESS Paragon and T3D were used to conduct this study. The
Paragon has a total of 64 nodes organized into a 16x4 mesh of
which 54 are compute nodes and 8 are service nodes. Each node,
an Intel GP node, is essentially a separate computer, with one
compute and one communication i860 processors. Each of the 56
compute nodes has 32 MBytes of memory. The service nodes
include: 4 1/0 nodes with 32 MBytes memory and a 4.8 Gbyte RAID
each, 1 HIPPI node with 32 MBytes memory, 1 User Service node
with 32 MBytes memory, and 1 boot node with 32 MBytes memory and
a 4.8 Gbyte RAID. The peak performance (using 56 nodes) is 5.6
GFlops in single precision with an aggregate memory space of 1.8
GBytes and aggregate online disk capacity in excess of 20
GBytes. The programs can be developed in C or FORTRAN which are
supported by NX library routines for communication and
synchronization purposes.

The Cray T3D is a MIMD system with physically distributed but
globally addressed memory. The JPL T3D has a Cray Y-MP as its
host system and currently consists of 256 processors each with 2
MWords (16 MB) of DRAM memory. About 25% of the memory is
required by the UNICOS microkernel, therefore, the users can
expect to have 12 MB of memory for program and data. Each PE is
a 64-bit DEC Alpha microprocessor with a frequency of 150 Mhz
capable of achieving 150 MFLOPS. The memory interface between
the processor and the local memory extends the local virtual
address space to a global adderess space. The Alpha processor
has a direct-mapped data cache organized into 256 lines with 32
bytes per line. Programs can invalidate the local cache as
needed to maintain the coherencey. Also, remote data entering a
processor's local memory can invalidate the corresponding cache
line. The system is space-shared into partitions where the

3

numbers of processors are powers of two. A node consists of two
processors sharing a network support logic. All processors are
connected by a bi-directional 3-D torus system interconnect
network. This topology ensures short connection paths and high
bisectional bandwidth. Channels between nodes are two bytes wide
and the peak interprocessor communication rate is 300 MB/sec. in
every direction through the torus. The system software includes
FORTRAN (a superset of FORTRAN 77 including many FORTRAN 90
array syntax statements), C, and C++ compilers as well as tools
for application performance analysis and parallel code
debugging. The PVM is currently supported as are some lower
level Cray libraries for passing data and messages among
processors.

In order to allow accurate measurements of communications, the
message passing programming model was used. All applications
were developed in C and augmented with the appropriate NX or PVM
communication calls. The applications used the "single program,
multiple data" (SPMD) programming model. In this model, the same
program runs on each node in the application, but each node
works on a part of the data. However, because each node is an
independent computer, one can also use other programming models.
One example is the "manager-worker" model, in which a "manager"
program starts up several "worker" programs on other nodes, then
gathers and interprets their results.

In our implementations, the PIC application used a worker-worker
SPMD model, while the N-body used the manager-worker model.
With this model, the manager creates the tree where all spatial
information about all particles are inserted. Then, the manager
broadcasts the tree to all nodes. Each node manipulates only a
subset of the particles in order to compute the essential forces
that interact with those particles. Therefore, each node does
its work without access to data that is being held by other
nodes. Each "worker" node updates the information of all of its
particles. The "worker" node, then, sends its updated particles
to the "manager" node in order to create an updated tree which
is to be used in the next time-step.

2.2 N-body Problem and the Barnes-Hut Method

The general N-body problem nay be stated as the following set cf
ordinary differential equations [151:

In astrophysical simulations, the force term, Fij is the
Newtonian gravity:

4

The gravitational force is "long-range", meaning that there is no
cutoff point, beyond which the force may be considered
negligible. In principle, it is necessary to evaluate the entire
sum on the right-hand side of (2) at each time step of the time
integration. Naively, this requires O(N2) operations at each
time step.

The Barnes-Hut (BH) 121 algorithm is one of a number of
algorithms [1,2,8,10,111 that use a multiple expansion and a
hierarchical data structure to reduce the complexity of computing
long-range interactions like gravity. The multipole expansion
allows one to treat a collection of bodies as a point mass
(perhaps with quadrupole and higher moments) located at the
center of mass. In Figure 1, the force on point Xi may be
evaluated approximately as:

The quality of the approximation in (4) is a decreasing function
of the ratio: b/lRcml, where b is the radius of the collection of
bodies. In the BH algorithm, multipole moments are computed for
cubical cells for an octtree of variable depth. The tree is
constructed at each time step with the following properties:

1. The root cell encloses all of the bodies.
2. No terminal cell contains more than rn bodies.
3 . Any cell with rn or fewer bodies is a terminal cell.

A typical two-dimensional BH tree with r n = l is shown in Figure 2.

To compute the force on a body, one traverses the tree starting
at the root. Any time a cell with a sufficiently small value of
b/lRcml is encountered, the multipole approximation is utilized.
Thus, distant cells, which comprise many individual bodies, may

Point of

Far enough away

Equivalent
particle

5

Figure 1. Approximation of particles by a single point mass.

Figure 2. A 2-D particle distribution and its quadtree.

be approximated in unit time. The resulting algorithm, when
applied to all bodies, requires O(N.logN) operations to evaluate
the forces on all N bodies.

In the BH method, the force-computation phase within a time-step
is expanded into three phases:

1. Building the tree: The current positions of the particles are
first used to determine the dimensions of the root cell of the
tree. The tree is then built by adding particles one by one into
the initially empty root cell, and subdividing a cell into its
four children as soon as it contains more than a single particle.

2. Computing cell centers of mass: An upward pass is made through
the tree starting at the leaves, to compute the center of mass of
internal cells from the centers of mass of their children.

3 . Computing forces: The force-computation phase consumes well
over 90% of the sequential execution time in typical problems,
and is described in detail below.

The tree is traversed once per particle to compute the net force
acting on that particle. The force-computation algorithm for a

following test recursively for every cell it visits: If the
cell's center of mass is far enough away from the particle, the
entire subtree under that cell is approximated by a single
particle at the cell's center of mass, and the force this center
of mass exerts on the particle is computed. If, however, the

particle rrc-rvtrr 3 L a L L a a L - r t the root of t he t r e e 2nd cofid~cts the

6

center of mass is not far enough away from the particle, the cell
must be "opened: and each of its subcells visited.

4 . Updating particle properties: Finally, the force acting on a
particle is used to update such particle properties as
acceleration, velocity and position. This phase does a constant
amount of work per particle, so its computational complexity is
O(N).

Conceptually, the main data structure in the application is the
Barnes-Hut tree. Since the tree changes every time-step, it is
implemented in the program with two arrays: an array of bodies
that are leaves of the tree, and an array of internal cells in
the tree. Among other information, every cell has pointers to its
children, and it is these pointers that maintain the current
structure of the tree. The structure representing a body holds 56
bytes of data in two dimensions. There is also a separate array
of pointers to bodies and one of pointers to cells. These arrays
are used by the processors to determine which bodies and cells
they own. Every processor owns an equal contiguous chunk of
pointers in these arrays, and each chunk is larger than the
maximum number of bodies or cells a processor is expected to own.
The total data space of the program is linearly proportional to
the number of bodies for both uniform distributions (balanced
tree) and non uniform ones.

The domain decomposition technique used here is Costzones
partitioning [161. In this method, the summation of works
associated with all particles is used to divide the workload
equally among the processors. This technique is very simple and
does not have much computational overhead associated with it,
when compared with other popular methods, such as the Orthogonal
Recursive Bisection (ORB) [151.

The Costzones technique takes advantage of another key insight
into the hierarchical methods for classical N-body problems,
which is that they already have a representation of the spatial
distribution encoded in the tree data structure. Consequently,
one can partition the tree rather than partitioning the space
directly. In the Costzones scheme, the tree cell's children laid
out from left to right in increasing order of child number.
The cost of every particle, which is the total amount of
interactions between the particle and all others, as counted in
the previous time step, is stored with the particle. Every
internal cell holds the sum of the costs of all particles that
are contained within.

The total cost in the domain is divided among processors so that
every processor has a contiguous, eqi-ial range or zone of costs
(hence the name Costzones). For example, a total cost of 1000
interactions would be split among 10 processors so that the zone
comprising costs 1-100 is assigned to the first processor, zone
101-200 to the second, and so on. Which costzone a particle

7

belongs to, is determined by the total cost up to that particle
in an inorder traversal of the tree.

In our implementation, building the tree is done at a manager
node. After building the BH tree, the manager broadcasts the BH
tree to the worker nodes. Therefore, an identical copy of the BH
tree would be available in each processor.

Since each processor has a subset of the bodies and a whole copy
of the BH tree, there is no more need for interprocessor
communication. In fact, the original serial code for force
evaluation may be used completely unchanged. The parallel
algorithm will produce results identical to the serial algorithm,
except for a very small amount of roundoff error which results
from the non-associativity of floating point operations.

2.3 The PIC Problem

In the PIC approach, the force equation is based on continuum
representations of the charge density and electric field.
Poisson’s equation

relates the charge density p(x) to the electric potential $. The
electric field is

and the force on particle i is

where qi is the charge on particle i and Xi is the location of
it. To solve these equations, finite difference approximations on
a grid are used in the following four steps:

1) Calculate p at each grid point based on the positions of
particles. In this step, a Cloud-In-Cell charge assi;.nment scheme
is employed. If the particle position Xi is located between the
two grid cell centers xg-l and xg, the charge assigned to each of
these cells is given by

where Ax is the grid cell size.

This operation scales as O (N p) , the number of particles.

8

2) Solve (1) using FFT. This scales as U!Ng.log Ng), where Ng is
the number of grid points; then evaluate E at each grid point
using (21 , which scales as O(Ng).

3) Use interpolation and (3) to evaluate the force on each
particle. In this step, the finite difference approximation

is used.

This step scales as Np.

4) Solve particle equations of motion, that are,

where Vi and mi are the velocity and mass of particle i,
respectively, to find the new locations and velocities of the
particles. This scales as O(Np).

Combining these steps, the whole scheme has the complexity of
O(Np + Ng.lOg Ng) .
In general, these four steps involve computation and
communication between the data structures representing the field
data and the particle data. The field data is represented as an
array where domain neighborhood relationships are maintained by
the indices of the array cells. The particle data array,
however, maintains no special relationship to neighboring
elements. Domain decomposition for PIC codes E4, 5 , 121 can be
used for both particles and fields. The load on any processor
has the components of particle related and grid related
operations. The objective should be to adjust the domain
boundaries so that the total load is distributed over the
processors evenly. It is possible therefore that one processor
might spend more of its time on particles and less on grid
points than another processor,. and yet both would complete at
the same time. This benefit cannot be realized for electrostatic
codes because the global character of Poisson's equation forces
the processors to be synchronized both at the start and the end
of the field solver equation.

The developed parallel code is an implementation of 3 - D
Electrostatic PIC Simulation. The particles are finite sized
charge clouds which are divided among the processors uniformly.
The particle data structures are vectors holding the position
and velocity information. The field data structures are 3 - D
arrays with wrap-around boundary conditions. The algorithm
includes an adaptive time-step adjustment scheme in order to
prevent the particles from moving any further than neighboring
grid cells. Each processor processes its own particle data when
charging corresponding grid points. These charges are collected

9

from the processors with a global summation operation. A 3 - ~
parallel FFT routine, realized using slab decomposition and a
Paragon 1-D FFT library routine, calculates the potentials of
the grid locations from grid charges. Note that right before and
after this field solving process, every processor will have the
global charge and field information, respectively. This type of
decomposition results in a parallel execution time with an input
size dependent component and a constant one which is related to
the grid size, should the grid remain the same for simulations
of different number of particles. For any realistic simulation,
the number of grid cells is much smaller than that of the
particles. For the 3-D FFT, the data are stored in such a way
that each “planeii formed by two of the dimensions is entirely
within one processor and the other dimension is divided among
the processors. The 3-D transform is performed by factoring it
into 1-D transforms along each of the dimensions. Thus, two of
these dimensions can be processed by transforms within single
processors, without communication. To transform along the other
dimension within single processors, the data are rearranged
among the processors so that the slabs contain this third
dimension, and one of the other dimensions is now divided among
processors. Therefore, the decomposition of data with regard to
the dimensions is different in the space and frequency domains.
At the end, every processor will have a slab of the electric
potential data which must be made global for electric field
calculations.

3 . PERFORMANCE BUDGET

The, intended performance measurements are designed to correlate
the system scalability to parallel overhead, from the
user/application perspective. Therefore, our performance budget
model relies on application instrumentation and breaks the
overall parallel execution session into non-overlapping useful
processing time and a number of overhead components. Desirable
architectural features, such as the ability to hide latency, as
well as good parallel programming practices, such as the use of
asynchronous rather than synchronous communications, are
therefore favored by this model. The types of overhead
identified here are the average communication overhead,
imbalance overhead, and redundancy overhead. Each of these
types of overhead is reported as a percentage of the parallel
execution time. The general programming model used was, again,
the SPMD model due to its popularity. To facilitate the
communications overhead measurements, the code was developed
using the message-passing paradigm.

The communications overhead is measured directly and averaged
over all processors used for the computation. A communication
transaction is measured from the point of initiating the
communication system call, till the call returns. Redundancy
overhead refers to the additional operations needed to facilitate
the parallelization. TWO sources of redundancy are

10

differentiated here. The first is the parallel duplication, in
which the same operation is duplicated using the same data values
at all processors. The second is the unique redundancy, in which
different or similar but not identical processing is done to
allow the parallelization. Example of the duplication redundancy
is the initialization of a loop counter by the same value at all
processors. Example of the unique parallelization redundancy is
operations that pertain to domain decomposition, where each
processor tries to figure out which part of the data it will be
working on. Given n processors, (n-1) copies of the duplication
redundancy and all unique redundancy are averaged over all
processors to produce the redundancy overhead. Imbalance/wait
overhead is the time difference between the max completion time
and the minimum completion time over all processors. All timing
measurements were wall-clock timing and timed activities were
selected such that no global knowledge of time was needed.

4. EXPERIMENTAL MEASUREMENTS ON THE PARAGON AND T3D

Measurements of instruction mixes and serial execution were
collected as a first attempt to understand the characteristics of
the underlying simulation codes and the consequent serial
execution behaviors. The Nbody was foud to have a higer
percentatge of integer operations (almost 60%) due to the tree
construction and ,manipulations, compared to only 32% in the case
of PIC. PIC, however, was characterized with high memory
requirements (almost 40% of the instructions are load/store) due
to comparisons with all particles, and higher floating point
operations (23%) mostly due to field calculations. In Nbody, 26%
of the instructions only were load/store and 14% were floating
point operations.

Table 1 and Table 2 show how such instruction mixes tarnslated
into differences in the execution times trends. For example,
moving from the Paragon (i860 processors) to the T3D (DEC
Alphas), PIC shows a little improvement in speed, while the
Nbody, with its dominant integer manipulations and less memory,
is showing up to one order of magnitude improvement.

Tablel:
Sample Serial Execution Times per Iteration on the
Paragon

PIC :

Size time(m=32) time(m=64)

256K 13.35 sec. 21.92 sec.

1 M (extrapolated) 45.93 58.31
1M (real) 249.20 820.41

512K 24.41 34. a 5

1 1

N-body :

Size

1K
8K
32K

time

5.77 sec.
53.27
237.51

Table 2:
Sample Serial Execution Time8 per Iteration on the T3D

PIC :

Size time (m=32) t ime (m=64 1

256K 5.53 sec. 17.02 sec.
512K 9.74 21.17
1M 18.34 29.49
2M (extrapolated) 35.18 46.12

N-body :

Size J ime

1K
8K
32K

0.53 sec.
6.31
30.90

4.2 Paragon Mea8UrementS
4.2.1 N-Body Measurements

A number of experiments were conducted to reveal the behavior of
the N-body application with respect to scalability and overhead.
These were performed for different input data sizes as well as
for different number of processors. Figure 3 summarizes the
scalability measurements. In this figure, N-body scales nicely
with the increasing number of processors, particularly when large
data sets are used. This is consistent with the intuition driven
from the way the parallel program works. In the used parallel
program, building the tree was done sequentially at the manager
node, recall the manager-worker model. This sequential part
recpires traversixg t h e tree enly m c e . On the ether hand,
computing the forces at each body was parallelized, which
requires N traverses of the tree in the sequential case. With
such N:l growth ratio in the parallel to the sequential parts,
near-linear speed up is expected. However, due to the rising

12

communications cost associated with the centeralized construction
of the tree, as the size of the machine grows and processors
become more distant from one another, a gradual drop in
efficiency is observed.

Figures 4 through 6 report the overhead measurements for lK, 4K,
and 32K bodies, respectively. As the number of processors
increase, a corresponding increase of communications overhead and
imbalance take place (Figure-4). While the costzone
decomposition guarantees equal computational effort by all
processors, the imbalance overhead continues to increase as more
processors are used. This is a side effect due to the use of the
manager-worker model, as distance variability from the manager
increases with the increased number of workers. However, as the
input data size gets larger, most of this overhead is amortized
nicely, as shown in Figure 5&6. This is due to the rapid growth
in the parallel part of the program, as pointed before.
Redundancy overhead, on the other hand, has been minimal in all
cases.

10 -

a
Q
c

a
n
3
U a a
v)
n

0
I 32k

1 I I

l k

- 2 k
I 4k - 8k
I 16k

0 10 20 3 0 4 0

Number of Processors

3. Scalabilitv of the N-body on the Paragon.

13

120

100 -

80 -
60 -
40 -

20-

0 -
4 8 1 6 3 2

Number of Processors

-

Figure 4. N-body Performance Budget at 1K Bodies.

E
c
0
m
U
3
m

0
0
E :
a-

.c L
0

0 a

100

40

20 :j 0

4 8 1 6 32

Number of Processors

Figure 5. N-body Performance Budget at 4K Bodies.

14

E
C a
U J
'0
1
m

a
0
E :
L

.L L
0

a n

1 00

80

60

40

20 mmunication

0

Figure 6 .

4 . 2 . 2 P I C

4 8 1 6 32

Number of Processors

N-body Performance Budget at 32K Bodies.

Measurements on the Paragon

PIC measurements are summarized in Figure-7 through Figure-14. As
one can vary both the grid size and the number of particles,
measurements are reported for different number of particles and
processors, considering two grid sizes, 32x32~32 (m=32) and
64x64~64 (m=64). It should be mentioned that we have initially
used the NX routine gssum (global sum of floating-point vectors)
to make the global charge and electric field information
available in every processor. However, since the grid
computations require rapidly growing global communication and
gssum seems to be implemented using many many-to-many
communications, speed up dropped significantly with more than 8
processors. Our measurements have shown that the gssm consumes
most of the total communication time and does not scale well with
the number of processors. It works very efficiently for 4- and 8 -
processor partitions, but for 16- and 32-processor ones. On the
other hand, it has been observed to scale well with the amount of
data communicated. TO reduce the communication overhead, we have
implemented our own global sum routine based on parallel-prefix
algorithm using many one-to-one communications. As shown in
Figures 7 and 8, the resulting code exhibits good scalability,
which becomes better as the simulation size is increased because
of better amortized communication overhead. Also, figure 7
generally exhibits better speedup factor, than that of 8. This
is due to the increase of global communications associated with
the increased size of the grid.

15

In Figures 7 and 8, the uniprocessor time was obtained through
extrapolation for the cases of 1M and 2M particles, at which
excessive paging was observed. This is necessary to reflect
realistic projections of speedup, non superlinear, when
sufficient memory is available. Superlinear scalability could
also occur due to improved caching when data is partitioned over
processors in a multiprocessor system. Figure 9, however, was
obtained by direct measurements to examine the superlinear effect
of paging. In this figure, speedup increases suddenly for
simulations that used more than 640K particles. This was due to
the fact that excessive paging was occurring when the

2 20-

n

Q
K

3
U
0
Q
P 10-
u)

uniprocessor measurements were- for 640K particles

- 256K - 384K
Q 512K - 1M - 2M

0 : I I 1

0 10 20 30 4 0

Number of Processors

or more.

Figure 7. PIC Scalability on the Paragon for a 3 2 x 3 2 ~ 3 2
Grid.

16

20

15
0
Q
U
c

n = 10

n

0
0
0

v)

5

0

-L. 256K - 384K - 512K - 1M
I 2M

1 1 1

Figure 8. PIC Scalability on the Paragon for a 6 4 x 6 4 ~ 6 4
Grid.

- 8PRs
__9_ 16PRs

200 400 600 800 1000 1200

Number of Particles (.1024)

Figure 9. Superlinear Speedup Behaviors (m=32).

17

3

100 -

80 -

60 -

40 -

20 -

E I

- max(m=32)
O avg (m=64) - rnax (rn=64)

I / E
0
0

0

o ! I I I

0 1 0 20 30 40

Number of Processors

Figure 10. Communication Measurements for PIC.

The communication behavior is emphasized in Figure 10. This
figure shows that there is not much difference between average
and maximum times spent for communication during each iteration
which indicates that communication activities are well balanced,
due to the worker-worker model.

n 1 120 1

4 8 16 32

Number of Processors

Figure 11. PIC Performance Budget fo r 256K particles

18

.

and m=32.

&

Bp-
Y

3
m

100

40

0
4 8 16 32

Number of Processors

Figure 12. PIC Performance Budget for 2M particles
and m=32.

120 I i

h

5
c
0
0
0
3
rn

0
0 c
2
L
0 -
i
9) a

J

100 -
80 -
60 -
40 -

4

0

Figure 13. PIC Performance Budget for 256K garticles
and m=64.

19

3
Y

w
0
w
0 a
m

0
0
C :
L

.c L
0

0
n

Figure

120 1
100

80

60

40

20

0
4 8 16 32

Number of Processors

14. PIC Performance Budget for 2M particles
and m=64.

The performance budget graphs, Figures 11 through 14, show that
the redundancy component is not substantial. Communication
component grows quickly with increasing grid size and becomes the
dominant activity when the data size is not large enough.
Amortization of overhead can be seen by comparing Figure 11 with
Figure 12, and Figure 13 with Figure 14. However, for the bigger
grid size, the large increase in communications makes the
overhead hard to hide by increasing the data volume 8 folds.
Imbalance has been observed to be rather variant, increasing with
the amount of communication but is negligibly small.

4.3. MEASUREMENTS ON THE T3D
4.3.1 N-Body Measurements

In figure 15, the scalability of Nbody on the T3D is presented.
The smaller comunication did not result in better scalability
than the case of the Paragon, for 32 processors or less. This is
due to the fact that the alpha processor is faster for Nbody, as
shown in tables 1 and 2 , which makes the
computation/communication ratio smaller, although the execution
is faster. Figures 16-18, show the performance budget. The

20

ratio of the u s e f u l work is again small as compared to the
Paragon due to the f a s t processor.

2o pl.
9)

Q
U
c

n
3 10

n

0
0
9)

v)

0 : . . . v . I . . , , . I , , . , , I
0 5 0 100 150

Number of Processors

Figure 15. N-Body Scalability

Figure 16.

120

100

80

60

40

20

0

l k
2k
4k
8k
16k
32k
64k
128k

4 8 1 6 3 2 6 4 128
Number of Processors

N-Body Performance Budget for 1K particles.

21

120 i
c
0
w
0
3
m
0
0
E :
L

r L
0

0 n

100

80

60

40

20

0
4 8 1 6 32 6 4 128

Number of Processors

Figure 17. N-Body Performance Budget for 4K particles.

a
0
E

E
L

c L
0

0 n

100

80

60

40

20

0
4 8 16 32 6 4 128

Number of Processors

Figure 18. N-Body Performance Budget for 32K particles.

4.3.2 PIC Measurements

22

.

*

-

20

0
Q
K
c

a 10

n

1
U
0 a
v)

Y 256K - 384K - 512K - 1M
I 2M

0 : I I I

0 10 20 30 40

Number of Processors

Figure 1 9 . P I C Scalability on the T3D for a 3 2 x 3 2 ~ 3 2
g r i d .

0 c.

d
a
3
U a a a
v)

Figure 2 0 .
grid.

6 -

4 -

2-

512K
-t 1M
I 2M

0
0 20 4 0 60 8 0

Number of Processors

PIC Scalability on the T3D for a 6 4 x 6 4 ~ 6 4

23

Aw. Comm. Time (m=32) - Max. Comm. Time (m=32) - Max. Comm. Time (m=64)

0 1 0 20 3 0 4 0

Number of Processors

Figure 21. Communication Measurements for PIC on T3D.

c
0 m rn a
m

Figure 22.
m=32.

100

80

60

40

20

0
4 8 16 32

Number of Processors

P I C Performance Budget for 2561~ particles and

24

g
Y

c
al a w
3
m

0
0
E :
L

r L
0

0 a

120

100 -
80 -
60 -
40 -
20 -

O I

Figure 23.
m=32.

-r

4 8 1 6 32

Number of Processors

PIC Performance Budget for 2M particles and

120 I I

0
0
c :
L.

.c
L
0

al
n

100

60

"i
0

~ communication

T 'I T

4 8 1 6 32 64

Number of Processors

Figure 24. PIC Performance Budget f o r 256K Barticles and
m=64.

25

E

i!
b.

c b.
0

0 n

Figure 25.
m=64.

100

80

60

40

20

0

81 comrnunicalii

'c

4 8 1 6 32 6 4

Number of Processors

PIC Performance Budget for 2M particles and

On the T3D, PIC simulation presents a better overall "picture".
in terms of execution times. The iteration time is about 30% of
that on the Paragon, although the NX routines are considered to
be superior to PVM calls. Clearly, processor and network speed
are dominant factors. Figures 19 and 20 indicate that the
scalability is greatly affected by the communication component, a
fact supported by performance budget figures as well. When the
ratio of the data to be processed to the number of grid points to
be communicated is large enough, the code scales quite well
(figure 19). Communication time exhibits a smooth slope with
increasing data sizes. The performance budget figures, on the
other hand, include smaller portions of useful work than ones on

Characteristically, the execution accross the processors are
again well-balanced and redundancy is negligibly small.

the Paragon, showing the negative effect of PVM .

5. OBSERVATIONS AND CONCLUSIONS

In addition to the presented measurements, c**y uI day-to-day
experience throughout this study has revealed many issues. We sum
the experiences and observations with the following conclusions.

5.1. Effect of Programming Model

26

The use of the manager-worker model in the N-body code has
resulted in many experiences that are quite different from those
with worker-worker model used in PIC. In N-body, the model used
resulted in some imbalance overhead, although the workload was
intentionally balanced using the costzone method. The observed
imbalance was due to the focal point of communication created by
the manager and the variability of the communication distances
from arbitrary nodes to the manager. On the other hand, the
worker-worker model balanced the communications in the PIC
implementation. However, balanced communication when coupled with
many-to-many communications transactions means increased
conflicts and performance loss as the case in the original gsum
implementation.

5.2. Effect of Memory Management

Again, superlinear scalability can be observed due to improved
caching and less frequent paging in parallel system. It would be
of interest to investigate a scalability model which takes such
memory-related factors into account.

5.3. Effect of Programming Style

Parallel program performance seems to be unusually susceptible to
programming style. We have already addressed the effect of using
different programming models. In addition, it has been noted
during this study that depending on the programmer, some types of
overhead can become more dominant than others. In fact, in many
cases, reducing one type of overhead comes at the expense of
increasing other types of overhead. For example, in many cases
communications can be replaced by redundancy and vice versa. A
general rule, however, is that redundancy is cheaper than
communications, in most cases.

5.4. Physical Effects

One phenomena that was observed in the Paragon, was that the
speed of a specific problem might differ based on which partition
of the machine is used. This was the case even when the same
number of nodes and the topology of the partition is maintained.
After repeated measurements and investigations, it was found that
processors that are physically closer to the cooling system tend
to run slower than those that are farther away [131 . Up to 7%
variability in execution time was observed and attributed to this
phenomena.

5 . 5 . CONCLUSIONS

In this study some of the sources of overhead were identified and
measured for real applications selected from NASA ESS domain.
Among the observed sources of overhead are the programming model,
programming style, and the communications patterns. With the
sophistication of multicomputers and in the light of the lack of
comparably powerful compiler technology, parallel machines are

27

much less forgiving than uniprocessor environments. Subtle
changes in programs can increase or decrease overhead
significantly. Some types of overhead can be reduced by
following better programming practices and some can be reduced by
converting them to less costly overhead activities. The dominant
type of overhead is communications and could be in many cases a
real challenge to scalability. While it is not considered a good
programming practice, duplication redundancy can effectively help
reduce the effect of communications. Efficiency in most of the
cases, specially when data sets were large enough, was greater
than 50% which indicates that progress in high-performance
computing is consistent with the needs of scientific parallel
simulations.

References

[l] A. W. Appel, "An Efficient Program for Many-Body Simulation",
SIAM J. Sci. Stat. Computing, vol. 6, 1985.

[21 J. Barnes and P. Hut, " A Hierarchical O(N.logN) Force-
Calculation Algorithm," Nature, vol. 324, pp. 446-449, 1986.

[31 C. K. Birdsall and A. B. Langton, Plasma Physics via Computer
Simulation, McGraw-Hill Inc., New York, 1985.

141 P. M. Campbell, E. A. Carmona and D. W. Walker, "Hierarchial
Domain Decomposition With Unitary Load Balancing for
Electromagnetic Particle-In-Cell Codes", Proceedings of the Fifth
Distributed Memory Computing Conference, 1990.

[51 R. D. Ferraro, P. C. Liewer and V. K . Decyk, "Dynamic Load
Balancing for a 2D Concurrent Plasma PIC Code", Journal of
Computational Physics, ~01.109, no.329, 1993.

[61 G. Fox, Numerical Algorithms for Modern Parallel Computer
Architectures, pp. 37-62, Springer-Verlag, 1988.

[71 G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and D.
Walker, Solving Problems on Concurrent Processors, Prentice Hall,
Englewood Cliffs, NJ, 1988.

i 8 j L. Greengard and V. Rokhlin, "A Fast Algorithm for Particle
Simulations", J. Comp. Phys., vo1.73, pp. 325-348, 1987.

[91 F. H. Harlow, "The Particle-in-Cell Computing Method in Fluid
Dynamics", Methods Comput. Phys., vo1.3, no.319, 1964.

[lo] R. W. Hockney and J. W. Eastwood, Computer Simulation Using
Particles. Adam Hilger, 1988.

[I11 J. Katzenelson. Computational Structure of the N-Body
Problem," SIAM J. Sci. Stat. Comput., vol. 10, no. 4, pp. 787-
815, 1989.

28

[12] P. C. Liewer and V. K. Decyk, "A General Concurrent
Algorithm for Plasma Particle-in-Cell Simulation Codes",
Journal of Computational Physics,vo1.85,no.302, 1989.

[13] Eric Mira, Personal Communication, Intel SSD, December 1994.

1141 Paragon User's Guide (312489-0021, Intel Corporation,
Beaverton, Oregon, 1993.

[151 J. Salmon, "Parallel N log N N-Body Algorithms and
Applications to Astrophysics," COMPCON, Spring 1991.

[16] J. P. Singh, Parallel Hierarchical N-Body Methods and Their
Implications, Ph.D. thesis, Stanford University, February 1993.

29

APPENDIX C:

WORKLOAD CHARACTERIZATION

In Collaboration with A. Meajil (GWU) and T. Sterling (CESDIS)

A Quantitative Approach for Representing and Differentiating Parallel
Architectures Workloads

Abdullah Meajil*, Tarek A. El-Ghazawi*, and Thomas Sterling+

*Department of Electrical Engineering and Computer Science
The George Washington University

Washington, D.C. 20052

+Center of Excellence in Space Data and Information Sciences
Goddard Space Flight Center

Code 930.5
Greenbelt, MD 2077 1

Corresponding Author: Tarek El-Ghazawi, tarek@seas.gwu.edu, (202)994-5507

A bstract
Experimental design of parallel computers calls for quantifiable methods to compare and evaluate the
requirements of different workloads within an application domain. Such metrics can help establish
the basis for scientific design of parallel computers driven by applications needs, to optimize
performance to cost. In this paper, a framework is presented for representing and comparing
workloads, based on the way they would exercise parallel machines. This workload characterization
is derived from parallel instruction centroid and parallel workload similarity. The centroid is a
workload approximation which captures the type and amount of parallel work presented by the
workload on the average. The workload similarity is based on measuring the normalized Euclidean
distance between workload centroids. It will be shown that this method outperforms comparable ones
in accuracy as well as in time and space requirements. An analysis of the NAS parallel benchmark
workloads will be presented in order to demonstrate the utility and insight provided within this
framework.

Key words: Instruction-Level Parallelism; Benchmarking; Workload Characterization; Performance
Evaluation

2

1. Introduction
The design of parallel architectures should be based on the requirements of real-life production
workloads, in order to maximize performance to cost. One essential ingredient in this is to develop
scientific basis for the design and analysis of parallel benchmark suites. The design of such p d e l
benchmark suites should be founded on criteria that establish an association between the benchmark
test suite and the target production workloads it represents. Selection of test workloads from an
application domain must be determined by specific metrics that delineate the salient equivalencies and
distinctions among candidate test codes. Previous efforts have addressed the problem of
characterizing and measuring specific aspects of parallel workloads. Depending on the irrespective
objectives, these efforts have quantified different attributes such as the total number of operations,
average degree of parallelism, or instruction mixes [1-15]. However, unresolved still is the means to
characterize parallel workloads based on how they are expected to exercise parallel architecture. Such
characterization has to be valid across a wide-range of parallel architectures, in order to focus on the
applications and their requirements. Therefore we propose an application characterization which
takes into account the type of operations and operation counts presented to the machine on a cycle-by-
cycle basis, as given by the dynamic parallel instruction sequence in workloads. With this in place,
the similarity among each pair of workloads is measured using the normalized Euclidean distance, a
computationally efficient technique for pattern matching.

Since measuring parallel instructions is of interest to this study, we consider efforts that examined
instruction-level parallelism. Researchers have measured instruction-level parallelism to try different
parallel compilation concepts and study their effect on parallelism. Most of these studies measured the
limits of (average) parallelism under ideal conditions, such as the oracle model where parallelism is
only limited by true flow dependencies. Then, they examined the drop in parallelism when specific
architectural or compilation implementation concepts were introduced into the model.

Studies on instruction-level parallelism have taken one of two approaches. One approach is to analyze
the selected workload statically at the source-code level (or object-code with a special interpreter based
on a certain machine) [l-31. The other approach is to collect dynamic traces from actual execution and
schedule the instructions on the target machine model [4-121. The static analysis of workloads tends
to give conservative estimates for available parallelism since control dependencies can be only
resolved at run time. On the other hand, the dynamic analysis of workloads using speculative
execution and branch prediction [161 can measure the amount of parallelism which theoretically exists
in a given workload. Although the scope was different in these studies, the techniques are of interest
to our work as alternative means of measuring parallelism. Many researchers have observed that
benchmarking should become more of a scientific activity [171. Due to the necessity of parallelism for
achieving good performance, this work develops a well founded parallelism-based workload
representation and comparison framework. This framework provides meaningful information to
designers and users of high-performance systems as well as to parallel benchmarking developers and
performance analysts.

In this work we only consider workload characterization based on parallel instructions, which
encompasses information on parallelism, instruction mix, and amount and type of work on a cycle-
by-cycle basis. Bradley and Larson [18] have considered parallel workload characterization using
parallel instructions. Their technique compares the differences between workloads based on executed
parallel instructions (EPI). Executed parallelism is the parallelism exploited as a result of interaction
between hardware and software. This technique is, therefore, an architecture-dependent technique
due to its dependency on the specific details of the underlying architecture. In their study, a subset of
the Perfect' Benchmarks has been chosen to run on the Cray Y-MP. Then a multidimensional matrix
that represents the workload parallelism profile was constructed. The Frobenius mamx norm [29] is
then used to quantify the difference between the two workload parallelism matrices. In addition to
requiring a lot of space and time, this method is restricted to comparing identical executed parallel
instructions only.

2

The technique proposed here, in contrast, uses the vector-space model 1191 to provide a single point
(but multidimensional) representation of parallel workloads and measure the degree of similarity
between them. The similarity is derived from the spatial proximity between workload points in that
space and therefore provides a collective mure of similarity based on all instructions. In specific,
each workload in a benchmark suite is approximated by a parallel-instruction centroid under this
model. The difference between two workloads are quantified using appropriately normalized
Euclidean distance between the two centroids.

Architecture-invariance of our parallel-instruction vector-space model is derived from using the oracle
abstract architecture model [4, 121. In order to simulate such an oracle, two major modules are used:
an interpreter and a scheduler [12, 251. The interpreter accepts the assembly instructions generated
from high-level code and executes it. The stream produced is passed to the scheduler which places
each instruction at the earliest possible level for execution, based on the dependencies between the
current instruction and the previously scheduled ones. The "two pass" nature of this process gives us
the oracle. Or loosely speaking is to assume that an Oracle is present to guide us at every conditional
jump, telling us which way the jump will go each reference, and resolving all ambiguous memory
references [4]. Therefore, the oracle model is an idealistic model that considers only true flow
dependencies. The parallel instructions (PI) are generated by scheduling sequential instructions that
are traced from a RISC processor execution onto the oracle model. The traced instructions are packed
into parallel instructions while respecting all flow dependencies between instructions. To compare
our technique with the parallelism-matrix method, we consider an extended version of the parallelism-
matrix technique which is made architecture-invariant by replacing the Cray Y-MP simulator with the
oracle model.

In this paper we present the concept of parallel-instruction vector space model and a parallel-
instruction workload similarity measurement technique. We compare this technique to the parallelism-
matrix method [181. It will be shown here that our method is machine-invariant and better represents
the degree of similarity between workloads. Further, the technique is very cost efficient when
compared with similar methods. We also show that the parallel-instruction vector space model
provides a useful framework for the design and analysis of benchmarks. This is demonstrated by
analyzing some of the NAS Parallel Benchmark workloads [20, 211 and their performance
measurements using this model. The NAS Parallel Benchmark (NPB) suite is rooted in the problems
of computational fluid dynamics (CFD) and computational aerosciences. It consists of eight
benchmark problems each of which is focusing on some important aspect of highly parallel
supercomputing, for aerophysics applications 122,231. This paper is organized as follows. Section 2
presents an overview of previous work, while section 3 presents our parallel-instruction vector space
model in details. The comparison between the two techniques is discussed in section 4. Experimental
measurements for the NAS Parallel benchmarks will be presented in section 5 . Finally, conclusions
are given in section 6.

2. The Parallelism-Matrix Workload Representation
This technique represents an executed-parallelism workload profile in a multidimensional m a m x (n-
matrix). Each dimension in this n-matrix represents a different instruction type in a workload.
"Work", in this section, has been defined to be the total number of operations of interest a workload
can have [18]. When there is only one instruction type of interest, work is considered to be the total
operations of that type in a workload. Therefore, a natural extension to the simple post-mortem
average is a histogram W = < W o , ... , W', where Wi is the number of clock periods during which i
operations of interest type were completed simultaneously. The sum

f

t = p M (1
i=O

is the number of clock periods consumed by the entire workload, and the weighted sum

3

4

FP
0 1 2 3

M 3 0.01 0.03 0.03 0.00
E 2 0.05 0.13 0.08 0.00
M I 0.07 0.20 0.11 0.00

0 0.07 0.13 0.07 0.02

I

w = C iWi (2)
is the total amouAyLf work performed by the workload. To facilitate comparisons between workloads
that have different execution times, each entry in the histogram is divided by t, the total execution time
in clock periods, to produce a normalized histogram called the parallelism vector P = <Po , , P p ,
where Pi = Wi/t. By construction, each entry Pi has a value between 0 and I that indicates the fraction
of time during which i units of work were completed in parallel.

I m n

Intuitively, the Frobenius norm represents the "distance" between two matrices, just as the Euclidean
formula is used to measure the distance between two points. This distance may range from 0.00, for
two workloads with identical executed parallelism distributions, to f l in the case where each matrix
has only one non-zero element (with value 1.00) in a different location. Thus, the numbers produced
by this method do not scale in way that can provide an intuitional understanding to the degree of
similarity. Further, should two workloads be 100% dissimilar, they can still produce different
numbers. Additional problems that relate to the processing and memory cost of this method are
addressed in section 4.

3. The Parallel-Instruction Vector-Space Model

4

5

Our Parallel-Instruction Vector Space Model is presented here provides for an effective workload
representation (Characterization), as will be shown. Effectiveness, in this regard, refers to the fidelity
of the representation and the associated space and time costs. In this framework, each parallel
instruction can be represented by a vector in a multidimensional space, where each coordinate
corresponds to a different instructiodoperation type (I-type) or a different basic operation (ADD,
LOAD, FMUL, ...). The position of each parallel instruction in the space is determined by the
magnitude of the I-types in that vector.
Parallel Workload Instant and Parallel Work: The workload instant for a parallel computer
system is defined here as the types and multiplicity of operations presented for execution by an
idealistic system (oracle model), in one cycle. A workload instant is, therefore, represented as a
vector quantity (parallel instruction) where each dimension represents an operation type and the
associated magnitude represents the multiplicity of that operation in the parallel instruction. Parallel
workload of an application is the sequence of instances (parallel instructions) generated from that
application.
Workload Centroid: The centroid is a parallel instruction in which each component corresponds to
the average occurrence of the corresponding operation type over all parallel instructions in the
workload Centroid, therefore, can be thought of as the point mass for the parallel workload body.
Workload Similarity: Two workloads exhibited by two applications are, thus, considered
identical if they present the machine with the same sequence of parallel instructions. In this case both
workloads are said to be exercising the machine resources in the same fashion.

3.1 The Vector-Space Workload Representation Model
Consider three types of operation (I-types) such as arithmetic operations (I"'), floating-point
operations (Fp), and memory access operations (MEM), then the parallel-instruction vector can be
represented in a three-dimensional space as a triplet:

If a parallel instruction in a workload is given by

then this ith parallel instruction in the workload has 4 MEM operations, 7 F'P operations, and 2 INT
operations. The total operations in this parallel instruction would be 13 operations that can be run
simultaneously. In general, parallel instructions are represented as t-vectors of the form

where the coefficient Uik represents the count of operations of type k in parallel instruction PIi.
Comparing workloads based on sequence of parallel instructions could be quite complex and
prohibitive, for realistic workloads. This is because the comparison requires examining each p a d e l
instruction from one workload against a l l parallel instructions in the other workload, which has very
high computational and storage requirements. This has led us to propose the concept of centroid for
workload representation and comparison, which is a cost-effective means to represent workloads, see
Figure 2.

PI = (MEM, FP, IW).

PIi = (4, 7,2),

PIi = (ail , ai2 , ... , ail) (4)

5

6

PI2
PI3

X'

PI1 = (Ill, m, Il3)

P12=(IT1', IlZ, ITT)

M

Pln= (/Tl", IT2: Il3")
FIGURE 2: Vector representation ofparallel instructions and their centroid in a 3-space.

The centroid is a parallel instruction in which each component corresponds to the average occurrence
of the corresponding operation type over all parallel instructions in the workload. Given a set of n
parallel instructions constituting a certain workload, the corresponding centroid vector is c = (CII, CI2, ... , CIt) (5)

where: CIk = I /n ak (6)
n

To illustrate the above,%gure 3 shows the steps to generate a centroid vector for a workload.

0 2 0 3 1
0 7 0 2 1

I-Type1 I-Type2
C 113 4

Figure 3: Example of the workload representation.
In addition to simplifying the analysis, centroids have the quality of providing an easy way to grasp
the workload characteristics and the corresponding resource requirements. This is because the
centroid couples instruction-level parallelism and instruction mix information to represent the types
and multiplicity of operations that the machine is required to perform, on the average, in one cycle.
This also represents the functional units types and average number of them needed in the target
machine in order to sustain a performance rate close to the machine's peak rate, under such kind of
workloads. Due to their simplicity and physical significance, as discussed above, centroids are used
in the rest of this work as the basis for workloads representation and comparisons.

I-Type3 I-Type4 I-Type5
0 3 213

3.3 Workload Comparison Using the Vector-Space Model

6

7

Measuring similarity based on centroids mandates the selection of a similarity memc which can
generate easy to understand numbers. To do so, we propose the following metric characteristics:

(1) Metric generates normalized values between 0 and 1.
(2) "0" represents one extreme (e.g. similar), while "1" represents the other extreme (e.g.
dissimilar).
(3) Scales appropriately between these two extremes as the similarity between the compared
workloads changes.

This leads us to select the normalized Euclidean distance between two centroids, representing two
different workloads, as follow. Let point u be the t-tuple (a i , a2, , at) and point v be the t-tuple
(bl, b2, ..., bt); then the Euclidean distance, from Pythagoras' theorem, is

d(u,v) = ,/(ar- b) ' +(a2- b2)'+ ...+(a - bt)' (7)

In order to conform with the aforementioned memc characteristics, the distance between any two
workloads in a benchmark suite can be normalized by dividing the distance between the two
workloads by the maximum distance found in that two workloads, from the origin. Let WLr and
WL, be two workloads in a benchmark suite, where each can be characterized by a t-centroid vector (t
instruction types) as follows:

WLr = (CIr1, CIr2 , ..., CIrt), and
WL, = (CISI , CIS2 , ... , CISt).

And let CIik represent the centroid magnitude of the kth instruction type in workload i. The maximum
centroid-vector in this workloads can be represented as follows.

Cm&WL, , WLS) = (ma(CIr1,CIsl), ... , ma(Cl,t,Clst))
Then, the Similarity between the two workloads can be measured as:

Sim(WLr,WLs)=d(WLr,WLs) I d(Cmax, null-vector) (9)
where null-vector (origin) is a t-vector in which each element equals to 0; hence, null-vector =
(O,O, ..., 0). In this case, 0 represents identical workloads while 1 represents orthogonal workloads
that use different operations and thus, would exercise different aspects of the target machine.

(8)

4. Comparison Study for the Two Techniques
4.1 Examples
Sample examples have been developed in order to demonstrate how the two techniques compare. Let
us have a benchmark suite that consists of five workloads (WLI , ... , WLg). Each workload is
presented in a table of size i x j, where i is the total number of unique parallel instructions in the
workload andj has a length o f t + I. Each one of the t columns represents an operation type @EM,
FP, 1"'). The additional column, #PIS, represents the total number of instances for that unique
parallel instruction. For example, #PIS = 5 means that there are five instances of a particular parallel
instruction in a workload.

Workload-1; Work lo ad-2 :
#PIsMEM FP I N T #PIsMEM F P I N T
5 1 0 1 2 0 1 1
3 0 1 0 3 1 1 0
7 1 0 0 I 1 0 1
2 0 0 1 5 1 1 1

Workload-3; Workload-4;
#PIsMEM FP I N T #PIsMEM FP I N T
5 3 2 1 3 4 3 2
7 4 3 0 I 3 4 2

7

8

M 3 0.00 0.00 0.00 0.00
E 2 0.00 0.00 0.00 0.176

M 1 0.00 0.00 0.00 0.00
0 0.00 0.00 0.00 0.00 *

2 2
3 2

3 1 2 4 4 1
3 0 5 4 4 2

Workload-5:
#PIsMEM FP I N T
3 0 2 0
7 2 0 0
5 1 0 2
2 0 0 2

4.2 Parallelism-Matrix Measurements
In the parallelism-matrix technique, each workload parallelism profile is presented in a three-
dimensional matrix (since there are only three types of operations). For example, workload WL3 is
illustrated in Figure 4 by spreading the INT-dimension layers of the three-dimensional matrix over
two layers for readability.

FP
0 1 2 3

4 0.00 0.00 0.00 0.00
M 3 0.00 0.00 0.294 0.00

E 2 0.00 0.00 0.00 0.118

I A4 1 0.00 0.00 0.00 0.00
I 0 0.00 0.00 0.00 0.00

(bk Parallelism matrix when 2 INT-twe used!
Figure 4f Parallelism-matrix representation fTr workload WL3.

Figure 4.a represents the Zst INT layer where no INT operations are in the corresponding parallel
instruction. Figure 4.b represents the 2nd INT layer when only one INT operation is in the parallel
instruction.

To compare two workloads, the Frobenius matrix norm [29] is used in order to quantify the distances
or differences. Recall that the parallelism-matrix technique has been extended to be architecture-
invariant for comparisons with the parallel-instruction vector space model. As mentioned before, the
Frobenius ~lorrn ranges !xti.veen 0.00 and -E, therefore, it will be divided by that value. T&le 1
presents similarity measurements for some pairs of workloads in the benchmark set.

Table 1: Similarity measwemetits using purullelism-matrix technique.
I I Patallelism-Matrix 1

8

9

WL1& W L 2 0.424
' W L l & W L 3 0.549
' WL1& W L q 0.549
W L l & W L g 0.549
WL3& W L q 0.549

I Parallel-Instruction7
Vector Space

WL1& W L 2 0.453 18
WL1& W L 3 0.8425
WL1& W L q 0.875 1
WL1& W L g 0.1804
WL3& W L q 0.65

Table 3 presents similarity measurements for some pairs of workloads in our benchmark suite when
the parallel-instruction vector space model is used. Note that I .OO means dissimilar and 0.00 means
identical.

Table 3: Similarity

4.4 Discussion

9

10

Parallelism. Parallel-Instruction
Matrix Vector Space

WL1& WL2 0.424 0.453 18
WL1& WL3 0.549 0.8425
W L I & WL4 0.549 0.875 1
WL1& WLg 0.549 0.1804
WL3& WL4 0.549 0.65

L

The similarity among the workloads in the example suite can be examined quantitatively using
similarity functions, expressions (3) and (9). Table 4 shows the quantitative similarity for some pairs
of workloads when the two techniques are used. Note that similarity in parallelism is not a transitive
relation.

In general, the parallel-instruction vector space method presents more detailed information. For each
workload centroid, each attribute represents an arithmetic mean of a type of instruction in the
workload. By comparing this centroid to other workload centroid, each matching attribute will be
compared. This comparison tells in which direction these two workloads are different. Considering
workloads WLI and WL3, along the arithmetic instruction type, these two workloads exercise the
oracle model in the same manner. However, at the floating-point instruction type, WL3 uses more
floating-point functional units than WLI .

The parallel-instruction vector space method is also more efficient in time and space. After producing
parallel instructions, both techniques make two steps in order to measure the workload similarity.
The frst step is workload representation, and the second is workload comparison. The parallelism-
matrix technique represents a workload in a t-dimensional matrix where each dimension represents an
instruction type. The maximum magnitude of a dimension is t i + I, where n represents the maximum
instruction type occurrences in any parallel instruction in that workload. Therefore, the parallel matrix
technique needs as much storage as the size of the matrix. This has storage complexity of O(tzt). On
the other hand, the parallel-instruction vector space model represents a workload by a centroid of
length t. The time for workload
representation, in the parallelism-matrix technique, takes the parallel-instruction counts (p) times the
parallel-instruction length (t), or O(y0t). This is because all parallel insauctions have to be generated

Therefore, the storage complexity of this technique is O(f) .

10

.
1 1

first, before constructing and filling the matrix. However, in the parallel-instruction vector space
model, the computational complexity is Oft). This is due to the fact that the workload centroid is
calculated on-the-fly.

In the comparison step (measuring similarity), the parallelism-ma& technique compares every
element of one matrix with the corresponding element in the other matrix. Therefore, the
computational complexity of this technique is O(nt). In the parallel-instruction vector space model,
however, the computational complexity is O(t). This is due to the fact that the workload centroid has t
types of instructions.

Table 5 summarizes the comparative study between the parallelism-mamx technique and the parallel-
instruction vector space technique. It shows that our parallel-instruction vector space model
outperforms the parallelism-matrix technique for measuring the workload similarity in all essential
aspects.

p: parallel-instruction count.
t: parallel-instruction size.

n: maximum dimension length.

5. NAS Parallel Benchmark Experimental Workload Comparison

In order to demonstrate the potential utility of this model and verify the underlying concepts with
real-life applications we consider to study the NAS Parallel Benchmark suite [22, 233 using our
model. We start by representing the workloads in this suite using parallel instruction centroids.
Then we characterize the similarity among different workload pairs using the normalized Euclidean
distance approach. Finally, we demonstrate that in real-life workloads, such as those of NPB,
parallelism smoothability is high enough to use average degree of parallelism to represent parallel
activities, as in the centroid.

5.1 A NAS Parallel Benchmark Overview

The NPB suite consists of two major components: five parallel kernel benchmarks and three
simulated computational fluid dynamics (CFD) application benchmarks. This benchmark suite
successfully addresses many of the problems associated with benchmarking parallel machines.
They intended to accurately represent the principal computational and data movement requirements
of modern CFD applications. An exhaustive description of these NPB problems is given in [20-
231.

In order to keep traces and analysis time within practical limits, we have used the short input files
provided by the NAS Parallel Benchmark suite. The sample codes, provided by NAS, actually
solve scaled-down versions of the benchmarks that run on many current-generation workstations.
The standard input sizes for the NPB suites referred to as the Class A and Class B size problems.
Table 6 lists the problem size [20] and the dynamic operation counts of the sample code problems,

1 1

c

12

the Class A problems, and Class B problems. Operation counts are obtained using the spy tool
~ 4 1 .

Table 6: Operation Counts for NAS "Sample, Class A, arid Class B" Benchmarks

5.2 Experimental Measurements Tool and Process

In order to explore the inherent parallelism in workloads, instructions traced are scheduled for the
oracle model architecture. This model presents the most ideal machine that have unlimited processors
and memory, and does not incur any overhead. The Sequential Instruction Trace Analyzer (SITA) is
a tool developed at McGill University by Kevin Theobald to measure the amount of parallelism which
theoretically exists in a given workload [12, 251. SlTA takes a dynamic trace generated by spy tool
from a sequential execution of a conventional program, and schedules the instructions according to
how they could be executed on an idealized architecture while respecting all relevant dependencies
between instructions. Currently, SlTA is used to analyze SPARC executables and is designed to
work with spy tool, which is the only tool needed from the Spa package [24]. SlTA tool includes a
pre-analyzer (sitapu), a controldependence analyzer (sitadep), and a trace scheduler(sitarun). Note
that traced processes have been observed to run about 40 times slower than normal. If spy is used
with a trace analyzer, such as sitapa or sitarun, the resulting system will run some 400-600 times
slower than normal (400 for oracle and 600 for other models).

The analysis process of a SPARC workload or benchmark takes four steps. First, a SPARC
executable file is created, using the desired optimization level. The results will be more meaningful if
the program is statically linked. This eliminates the spurious instructions used in linking a program to
the libraries. Secondly, a pre-analyzer (sitapa) is run with spy and executable to extract a list of basic
blocks and frequencies of the workload, which is then read by the control-dependence analyzer
(sitadep) to produce an annotated list, as the third step. This annotations include control-dependency
relationships between the blocks and destination frequencies. Finally, the scheduler (sitarun) is run
with the annotated list as input, and generally with spy and executable. The scheduler produces
output indicating the parallelism available for the given input trace under the given oracle model.
There are 69 basic instruction operations in SPARC. These instructicm mainly fall hito five basic
categories: load/store (Memops), arithmetic/logic/shift (Intops), control transfer (Branchops),
readwrite control register (Controloys), and floating-point operate (Ff ops). Therefore, each parallel
instruction presented by a vector of length five [26].

5.3. Workload Centroids for NAS

12

13

Parallel-instruction centroid vectors can reveal differences in
distinguished by averages of parallelism degrees as shown in
behavior of two workloads can be efficientlv comDared bv

workload behavior that can not be
Table 7. Therefore, the parallelism
using the aforementioned uarallel-

instruction vector space model and the simildty funition, eipression (9). to quantify the s h a r i t y
between these workloads.

5.4 Similarity Measurements

Table 8 quantifies the similarity between each pair of benchmarks in the NAS Parallel Benchmark
suite, using expression (9). Again, note that the similarity in parallelism is not a transitive relation.
We first compare appsp and appbt, two workloads that are representative of computations
associated with the implicit operators of CFD codes such as ARC3D at NASA Ames. The
relatively high value, 0.64, of the similarity in parallelism illustrates that these two workloads have
different parallelism behaviors. Next we consider buk, a workload representing the application
area of integer sorting, and cgm, this workload is typical of unstructured grid computations.

Therelatively low value of the similarity in parallelism behavior, 0.319, illustrates that these two
workloads have relatively similar parallelism properties. Although the two workloads come from
different application areas, each workload is expected to exercises target machines with a very
similar mix of parallelism. The same conclusion of might be also drawn from the measurement,
0.39, of the similarity in parallelism between embar and fftpde workloads.

5.5 Parallelism Snrootbability of ATAS and Implications

Smoothability [121 is memc designed to capture the effect of parallelism profile variability around
the average degree of parallelism. It is basically the ratio of execution time with no restriction on
the number of processors to the execution time when the number of available processors is limited

13

_-

14
8

to the average degree of parallelism. Fortunately, SITA has the ability to limit the number of
operations which can be packed into one parallel instruction, and thus allow measuring
smoothability .

The interest in smoothability stems from the fact that the centroid is based upon the average degree
of parallelism for each type of operation. Therefore, for centroids to be a good representation of
workloads, those workloads should have relatively high smoothability (close to 1). In this section
we show that the majority of real-life applications, such as those represented by NAS, have high
smoothability .
In Table 9 we list the parallelism results for the NAS parallel benchmark workloads running on the
oracle model including the smoothability values. Our results indicate that the parallelism obtained
has a relatively smooth temporal profile which exhibits a high degree of uniformity in the
parallelism except for the buk benchmark. In all cases, but the buk benchmark, the smoothability
is better than 70%. In addition, we list the average operation delay, Le., the average number of
parallel instructions by which each operation is delayed before it can be executed. (The average
includes instructions which are executed as soon as they are ready, which are counted as 0.) Low
numbers, as with mgrid and appbt, indicate that the application is already fairly evenly distributed
in time, so not much "smoothing" is needed. High numbers, as with embar and buk suggest that
many operations are being delayed a long time before being executed. The high smoothability
numbers, however, suggest that delays do not significantly increase the lengths of critical paths.
Most importantly, in the context of this study, the smooth temporal behavior supports the fidelity
of representing practical workloads using parallel instruction centroids.

6. Conclusions

This paper introduced a parallelism-based methodology for an easy to understand representation of
workloads. The method is architecture-invariant and can be used effectively for the comparison of
workloads and assessing resource requirements. A method for comparing workloads based on the
notion of centroid of parallel instruction was introduced. This method uses the nornaked Euclidean
distance to provide an efficient means of comparing the workloads. The notion of centroid coupled
with distance (similarity) among pairs of workloads provide the basis for quantifiable analysis of
workloads to make informed decisions on the composition of parallel benchmark suites. Analysis of
existing benchmarks is also provided for by this model in which the centroid sheds light on the
hardware resource requirements and how the benchmark is exercising the target machines, and the
distance among workload pairs allows identifying possible correlation.

A comparative study between tlie pamiMisrn-rnamx technique and our parallel-instruction vector
space model was also presented. It was shown that the parallelism-matrix technique depends only on
identical rather than similar parallel instructions. However, the introduced parallel-instruction vector
space model takes all parallel instructions into account when representing workloads and their
similarities. Furthermore, while the parallelism-matrix technique requires O(p0r) computational time

14

a

15

for workload representation, the parallel-instruction vector space model requires only O(t).
Considering the storage requirements, the parallelism-matrix technique needs O(nt) memory space,
whereas the parallel-instruction vector space model needs only O(t}. In addition, when two
workloads are compared, the computational cost in the parallelism-matrix technique is O(nt). On the
other hand, the parallel-instruction vector space only requires O(t) computational time. Hence, the
parallel-instruction vector space model does not only provide more accurate, but also more cost-
effective parallelism-based representation of workloads.

The parallel-instruction workload model was used to study the similarities among the NAS Parallel
Benchmark workloads in a quantitative manner. The results c o n f m that workloads in NPB represent
a wide range of non-redundant applications with different characteristics. It was also shown from the
NPB results that parallel instruction centroids provide good approximation of workloads due to the
fact that most practical workloads have smooth parallelism profiles.

References
[13
programs," Computer, vol. 7, pp. 37-46, 1974.

D.J. Kuck, Y. Muraoka, and S.C. Chen. "Measurements of parallelism in ordinary FORTRAN

[2]
jumps," IEEE Transactions on Computers, vol. C-21, no. 12, pp. 1405-1411, December 1972.

E. M. Riseman and C. C. Foster, "The inhabitation of potential parallelism by codtionul

[3] G.S. Tjaden and M.J. Flynn, "Detection and parallel execution of independent instructions,"
IEEE Transactions on Computers, vol. C-19, no. 10, pp. 889-895, October 1970.

[4] A. Nicolau and J.A. Fisher, "Measuring the parallelism available for very long instruction word
architectures," IEEE Transactions on Computers, vol. 33, no. 11, pp. 968-976, Nov. 1984.

[SI M. Butler, T Yeh, Y. Patt, M. Alsup, H. Scales, and M. Shebanow, "Single Instruction Stream
Parallelism Is Greater Than Two," in Proceedings of the 8th Annual Symposium on Computer
Architecture, pp. 276-286, May 1991.

[6] M.S. Lam and R.P. Wilson, "Limits of controlflow on parallelism," in Proceedings of the 19th
Annual International Symposium on Computer Arcl&ecture,-Gold Coast, Australia, p c 46-57, May
19-21. 1992.

[7] M. Kumar, "Measuring parallelism in computation-intensive scientijicl engineering
applications," IEEE Transactions on Computers, vol. C-37, no. 9, pp. 1088-1098, Sep. 1988.

[8] D.W. Wall, "Limits of instruction-level parallelism," Proceedings of the Fourth International
Conference on Architectural Support for Programming Languages and Operating Systems, pp. 176-
188, Santa Clara, California, April 8-11, 1991.

191 T. Austin and G. Sohi, "Dynamic dependence analysis of ordinary programs," Proceedings of
the 19th Annual International Symposium on Computer Architectures, pp. 342-35 1, 1992.

[101 Arvind, D.E. Culler, and G.K. Maa, "Assessing the benefits of Fine-grained parallelism in
dutu~70w programs," Proceedings of Supercomputing 88, pp. 60-69, November 1988.

[111 A.K. Uht, "Extraction of massive instruction level yar*allelism," ACM SIGARCH News, pp. 5-
12, June 3, 1993.

15

a
r

16

[121 K.B. Theobald, G.R. Gao, and L.J. Hendren, “Ott the limits of program parallelism and its
srnoothability,” Proceedings of the 25 th Annual International Symposium on Micro-architecture
(MICRO-25), pp. 10-19, Portland, Oregon, December 1992. Also ACAPS Technical Memo 40,
McGill University, June 26, 1992.

[131 T. Conte and W. Hwu, “Benchmark Characterization,” IEEE Computer, pp. 48-56, January
1991.
[141 M. Calzarossa and G. Serazzi, “Workload Characterization for Supercomputer,“ Performance
Evaluation of Supercomputers, J.L. Martin (editor), pp. 283-3 15, North-Holland, 1988.

[151 J. Martin, “PerJbrrmance Evaluation of Supercomputers a~ui Their Applications,” Parallel
Systems and Computation, G. Paul and G. Almasi (Editors), pp. 221-235, North-Holland, 1988.

[161 J.K.F. Lee and A.J. Smith, “Branch prediction strategies ana‘ branch target buffer design,“
Computer, vol. 17, no. 1, pp. 6-22, January 1984.

[171 R. Hockney, The science of benchmarking, tutorial handouts, Supercomputer 94, Washington,
DC, November 1994.

[181 D. Bradley and J. Larson, “A parallelism-based analytic approach to performance evaluation
using application programs,“ Proceedings of the IEEE, vol., 81, no. 8, pp. 1126-1135, August
1993.

[19] E.W. Swokowski, Calculus with analytic geometry. 3rd ed., Prindle, Weber & Schmidtg
Publishers, Boston, Mass., 1983.

1201 D. Bailey, E. Barszcz, L. Dagum, and H. Simon, “NAS Parallel Benchmark Results 10-94,”
NAS technical report NAS-94001, October 1994, Calif.: NASA Ames Research Center.

[21] D. Bailey, The science of benchmarking, tutorial handouts, Supercomputer 94, Washington,
DC, November 1994.

[22] D. Bailey, et al., “The NAS Parallel Benchmarks,” Int’l J. Supercomputer Applications, Vol.
5, NO. 3, Fall 1991, pp. 63-73.

[23] D. Bailey, E. Barszcz, L. Dagum, and H. Simon, ”NAS Parallel Benchmark Results,” IEEE
Parallel & Distributed Technology, February 1993, pp. 43-51.

1241 G. Irlam, The Spa package, version 1.0, October 1991.

[25] K.B. Theobald, G.R. Gao, and L.J. Hendren, “Speculative Execution and Branch Prediction
on Parallel Machines,” ACAPS Technical Memo 57, McGill University, December 21, 1992.

[26] The SPARC Architecture Manual, Version 8, SPARC Int‘l, Inc., Menlo Park, CA, 1991.

1271 P. Fleming and J. Wallace, “How Not to Lie With Statistics: The Correct Way to Summarize
Benchmark Results,” Communications of ACM, pp. 218-221, March 1986, Vol. 29, No. 3.

[28] G. Amdahl, “Validity of the Single-Processor Approach to Achieving Lnrge-.Tccrle
Cosputtiig Cuprrbiiities,!! in AFiPS Conference Proceedings, 1967, pp. 483-485.

[29] R. Horn and C. Johnson, Mutrix Analysis. Chapter 5: Norms for vectors and matrices,
Cambridge University Press, New York, 1985.

16

Y

I . Report No.

NASA

2. Government Accession No.

Report Documentation

-

19. Security Classif. (of this report)
Unclassified

Page

20. Security Classif. (of this page)
Unclassified

1. Title and Subtitle
lxperimental Evaluation and Workload Characterization for High-
'erformance Computer Architectures

'. Author(s)
Tarek A. El-Ghazawi

1. Performing organization Name and Address
Dept. of Elec. Eng. and Computer Science
The George Washington University
Washington, DC 20052

2. Sponsoring Agency Name and Address
National Aeronautics and Space Administration
Washington, DC 20546-0001

NASA Goddard Space Flight Center
Greenbelt, MD 20771

3. Recipient's Catalog No.

5. Report Date

~

6. Performing Organization Code

8. Performing Organization Report No.

10. Work Unit No.

11. Contractor Grant No. NAS5-32337
USRA subcontract No. 5555-34

13. Type of Report and Period Covered
January 1,1994 - May 31,1995

Final

14.SponsoringAgencyCode

5. Supplementaty Notes
This work was performed under a subcontract issued by

Universities Space Research Association
10227 Wincopin Circle, Suite 212
Columbia, MD 21044 Task 31

6. Abstract
This research is conducted in the context of theJoint NSFNASA Initiative on Evaluation (JNNIE). JNNIE is an
inter-agency research program that goes beyond typica benchmarking to provide in-depth evaluations and
understanding of the factors that limit the scalability of high-performance computing systems. Many NSF and
NASA centers have participated in the effort. Our research effor was an integral part of implementing JNNIE in
the NASA ESS grand challenge applications context. Our research work under this program was composed of
three distinct, but related activities. They include the evaluation of NASA ESS high-performance computing
testbeds using the wavelet decomposition applicaton; and developing an experimental model for workload
characterization for understanding workoad requirements.

!n this report, we provide a summary of findings that covers all three parts, a list of the publications that
resulted from this effot, and three appendices with the detatils of each of the studies using a key publication
developed under the respective work.

17. Key Words (Suggested by Author(s))
Paralllel Processing
Experimental Performance
Image Processing
Wavelets

18. Distribution Statement

Unclassified--Unlimited

21. No. of Pages 22. Price
62

